High Level Musical Control of Sound Synthesis in OpenMusic

Carlos Agon, Marco Stroppa, Gérard Assayag (IRCAM)
{agonc, stroppa, assayag}@ircam.fr

Abstract : new classes have been added to
OpenMusic in order to handle the big amount of
parameters involved in the control of synthesis.

OpenMusic (Assayag & al, 1999) is a computer
assisted composition software based on
Common Lisp / CLOS (Steele 1990). It is is a
complete visual programming interface to
CL/CLOS where user operations are mainly
based on the drag and drop scheme applied over
icons, which stand for any OpenMusic-
representable objects, and containers, which are
editable panels giving access to the internal
structure of objects. As CLOS is metaclass
language, classes are a particular kind of objects,
which are in that case instances of metaclasses.
So classes may be handled visually as icons, and
their structure built or edited through their
graphical containers. The same stands for
generic functions, which containers own a set of
methods. OpenMusic being a musically-oriented
environment, a lot of predefined classes and
methods are made available to handle musical
structures and allow their graphical edition
(including, of course music notation).

After a lot of investigations in the field of
symbolic computation, we have decided to
explore the potential of the OpenMusic visual
language as a control environment for sound
synthesis. The idea was not to implement
synthesis engines into OM, but to handle
visually different high level control paradigms,
then to generate the low level parameters
towards whatever engine was available around.
We have set up a collaboration with Marco
Stroppa who has been involved for a long time
in the control question and who had set up his
own portable environment, called Chroma, in

pure Common Lisp. The question adressed by
Stroppa was in particular how to manage huge
quantities of control data, bringing them back to
a few, musically significant abstractions. He had
designed a matricial representation, where rows
and columns would set up vectors of values for
identified synthesis parameters. The good thing
was that values could be given as litterals as
well as functions, thus providing the abstraction
needed. Another advantage was that these
functions could be easily connected to
compositional processes, such as harmonic or
rhythmical ones, independently from the
constraints of synthesis. As OpenMusic
provided already a powerful framework for
composition, it seemed natural to implement this
matrix abstraction in order to articulate symbolic
composition and sound synthesis. It was also a
challenge : would the visual object oriented
environment resist and prove ergonomy when
confronted to the large sets of data involved by
synthesis ?

class—array
-

nate

C C

firstclass secondc lass
v v

Figure 1a



N==———— NI =———— 0 H
Slots Show Allocation Default value §
z midic (%} ¥ instance [elalzlc}
z wel A ¥ | instance =L}
z dur E = | instance 188a
z chan bA ¥ instance 1
. tie |:| = | instance il z
Il (4] ]
Figure 1b
0= FIRSTMIASS =————— 0 H
Slots Show Allocation Default value §
H slot %) | instance 2]
H slotl %) | instance 2]
“ slotz E = | instance a
“ =slot3 E w | instance 5]
“ slotd B w | instance 5] (|
il [«]r] =
Figure Ic

A new abstract class named ‘class-array’
has been added to the OM kernel. It is intended
only to be subclassed. In the new subclasses, the
slots will define parameters for the synthesis
process. More precisely, each slot will be
attached to a row in the control matrix. In
picture 1, two subclasses have been defined.
Firstclass defines a set of parameters
(slot,...slot4). SecondClass takes advantage
from the underlying CLOS multiple inheritance
scheme. Instead of defining new slots, we’ll use
the predefined slots of the note class (midic,
vel, etc.) and these will constitute our synthesis
parameters. Of course, the two approaches could
be mixed, i.e., getting synthesis parameters both
from existing musical classes and by adding new
ones.

Once our classes have been defined, they can be
used inside a patch in order to generate new
instance objects. The way to do it in OM is
simply to drag the class icon on a patch window.

At this point, OM creates a factory. A factory is
a box which has inputs and outputs (figured as
small round inlets and outlets) which are
connected to the internal slots of the object to be
created (fig. 2a). Upon evaluation, a new object
is instantiated and its slots are initialized. A
factory is generally associated with a graphical
editor (Fig 2b), and with a miniview that shows
the content of the editor directly on the patch. In
figure 2a, only three among five parameters
have been made visible as inlets. These
parameters have been initialized in three
different manners. From left to right : the
number of columns (20), a litteral sequence of
integer values (which will be cycled through
untill the number of columns is exhausted), a
sequence computed by a visual algorithm, and a
visual-lambda expression (myPatch, opened in
Fig. 2¢). The latter, also called lambda-patch, is
a function that is passed as a functional object
rather than as a value resulting from
computation. Thus, instead of computing a great
number of values, we pass a function that will
be used on the fly to provide these values when
needed. This technique is called lazy-evaluation.
In our example, myPatch computes the function
y = cos(Pi/x). When the factory is evaluated, all
the row-slots are initialized with the minimal
information that will be necessary later for the
full matrix to be computed. Note that the two
last rows in the matrix miniview bear default
values, as the inlets corresponding to their slots
have not been used, and that the graphical editor
can be used to adjust manually the values after
computation.



L=0 “ I I )

i

a

|
)

bpf-sample

i
-

a1 = =)
3 43 6 LI5P
7 2 Q3 ap mypatch

*

-

x
|8

Figure 2a
| oFIRSTCLASS HHE
b Lines Composant
[] Show Contrals 18 =
= P2 - slot =
18 .4
B.BE/\
v _P3 - slotl
B.BE
= _F'4 - slot2
1 .84
* RNV r\ AN
N YV =
_||||||||||||||||||
i

Figure 2b

=——— mMypatch=—"o=[H B
E.141E-| T_‘
X
2
L
-
T y = cos (pifx)
JEF
Ccos ¥ = 0. l:ﬂ
0.02,...
| 5}
output E
i 4]~
Figure 2c

In the example in fig. 2, the input types to the
matrix are lists of numbers or functions that
compute numbers. This is because the slots in
class FirstClass have been defined as
numbers (the R icon, fig. 1¢). This will often be
the case when the matrix is used for synthesis.
But the slot type could be any type known to
OM : e.g. chord, voice, BPF, or even a
subclass of class-array. The only
requirement is that slot initialization be made in
a consistant way. So one can imagine initializing
the cells of the matrix by providing a lambda-
patch that will eventually fill them with other
sub-matrices. The matrices defined by class-
array are thus a very general tool of which only
a small subset is now experimented in the
domain of synthesis.



mk—params

119555

_‘-"—_'_—/_/—__/_/_,f

A WAL

A4

[3 G [7] [7] [7] [3

s

112 -

Figure 3

As it is defined, class-array matrices may
be interpreted in many different ways as clusters
of parameter values. The interpretation will
obviously depend on the synthesis engine
chosen and the on model it is based upon. We
will now show an application to Csound
(Boulanger 2000). We want to take a complex
chord-sequence in OM as a harmonic model for
additive synthesis. We have a very simple
Csound instrument that knows how to
synthesize a simple partial. A parser in OM
takes the .orc file, recognizes the parameters
(from pl to p6) and generates automatically a
subclass of class-array with as many slots
as needed (class SinusInst). In figure 3, a

SinusInst factory is shown. All its onset,
duration, frequency, amplitude, amplitude
envelope table, are computed from the chord-
sequence factory above, by the subpatch mk-
params, which we do not detail. Every column
in this factory is an internal representation for a
command line in the Csound score file, of the
form e.g. « i1l 0.0 2.15 0.496063
86.603877 2000 ».Every line is a different
parameter defined by a particular slot and its
associated inlet. Note that the choice of this
interpretation of the matrix structure is arbitrary,
and is made here because it is the most practical
when thinking about the Csound style of control.
When applied to another engine, another
interpretation will eventually be necessary. The
interpretation of the matrix data is concentrated
into the method synthesize. This method
will dispatch automatically to a score file
generation function (in the case of Csound) or
even to a function that will talk in real time
through a communication channel with such
real-time engines as Max or jMax. It is the
synthesize method that decides the
interpretation of the matrix, depending on the
target synthesizer. Currently, a synthesize
method is available for : Csound, Chant, and
Modalys. Another useful application under way
is a method that generates SDIF files : OM will
then be compatible with all the engines that
recognize this file format.

REFERENCES

Assayag, Rueda, Laurson, Agon, Delerue, 1999, « Computer
Assisted Composition at Ircam : PatchWork & OpenMusic »,
Computer Music Journal 23:3.

Boulanger R. (Ed.), 2000, « The Csound Book-Perspectives in
Software Synthesis, Sound Design, Signal Processing,and
Programming », MIT Press.

Schwarz D., Rodet X. et al, 2000, « Extensions and Applications
of the SDIF Sound Description Interchange Format » Proc.
ICMC 2000, Berlin.

Steele, G.L. « Common Lisp The Language» 2nd Edition.
Digital Press. 1990.



